
CS103 Handout 14

Winter 2018 January 19, 2018

First-Order Translation Checklist

In this handout, we’ve distilled fve specifc points that you should check in your frsttorder logic
statements before submitting them. They are as follows:

☐ Pair quantifiers with the appropriate connectives.

☐ Use whitespace and indentation to clarify meaning.

☐ Defer quantifiers until they’re needed.

☐ Check the types of all terms in the formula.

☐ Check the scoping on each variable.

We strongly recommend that you work through this checklist for each of the frsttorder statements
you produced when working through Problem Set Two (and, more generally, going forward). We
will specifcally be looking at these details when grading your problem set.

The remainder of this handout goes into more detail about what each of these rules mean.

2 / 8

Pair Quantifers With the Appropriate Connectives
In our lectures on frsttorder logic translations and in the Guide to Logic Translations, we stress the imt
portance of knowing the four Aristotelian forms and how to represent each of them in frsttorder logic.
Those forms pair the → connective with the ∀ quantifer and the ∧ connective with the ∃ quantifer. As
you saw in our frst lecture on frsttorder logic, mixing these up and pairing → with ∃ or ∧ with ∀ result
in incorrect translations.

When you’re reading over your translations and are getting ready to submit them, please, please, please
do a doubletcheck to make sure that you’re pairing the quantifers and connectives properly. It might
seem silly, but mixing up the → and ∧ connectives and pairing them with the wrong quantifer is one of
the single most common mistakes we make, and it’s something that the TAs are extremely good at spott
ting. So go quantifer by quantifer through your formulas and make sure that everything agrees properly
– we feel bad every time we deduct points for these sorts of errors.

For example, consider this attempted translation of the statement “there’s a horse with no name:”

∃h. (Horse(h) →
⚠ ∀n. (NameOf(h) ≠ n) ⚠

)

The toptlevel quantifer here is an existential quantifer, and it’s paired with the → connective, which im-
mediately suggests that this formula isn’t translated correctly. And indeed you can see this: imagine
there’s a world where every horse has a name, in which case “there’s a horse with no name” is false. But
this frsttorder logic formula would be true: just choose as h something that isn’t a horse.

Similarly, consider this attempted translation of the statement “everybody has someone to lean on:”

∀p. (Person(p) ∧
⚠ ∃q. (Person(q) ∧ CanLeanOn(p, q)) ⚠

)

Here, at the top level we see a universal quantifer paired with the ∧ connective, which immediately sugt
gests that this formula isn’t correct. As before, we can see this by thinking about an example. Imagine a
world where everyone does indeed have someone to lean on. Now, pick as p something that isn’t a pert
son (say, the ExxontMobil corporation). Then Person(p) is false, so the inside of universallytquantifed
formula is false for that choice of p, so the overall formula is false.

There are a few times when checking these rules can be a bit tricky. For example, let’s go back to our
translation of the statement “there is someone that everybody else loves,” which is shown here:

∃p. (Person(p) ∧
 ∀q. (Person(q) ∧ q ≠ p →
 Loves(q, p)
)
)

If you look at the universal quantifer introducing q, you’ll see that it is applied to a statement that does
indeed involve the ∧ connective, which seems like it breaks the rule from before. However, remember
that the ∧ connective has higher precedence than →, so the grouping here is

∀q. ((Person(q) ∧ q ≠ p) → […]

with the implies at the top level.

As mentioned in the Guide to Logic Translations, and as you saw in lecture, you will sometimes see the
↔ connective used with the ∀ quantifer, especially in the context of set theory. That’s a common cont
text where you’ll see the normal →/∀ pairing break down.

3 / 8

You will also sometimes see ∃ paired with ↔, which looks really weird the frst time you see it. This oft
ten results from taking the negation of a formula that pairs ∀ with ↔. For example, consider this fort
mula:

∃S. (Set(S) ∧
 ∀x. (x ∈ S ↔ x = 137)
)

(Question to ponder: what does this say?) If we negate this formula and push the negation as deep as
possible, we get this statement:

∀S. (Set(S) →
 ∃x. (x ∈ S ↔ x ≠ 137)
)

Notice that the innermost ∀ got fipped to an ∃, but the inner connective is still a ↔. That’s totally fne.
Remember that you can simplify ¬(p ↔ q) to p ↔ ¬q, so the ↔ connective “fips” to itself when it’s
negated.

A great specifc test you can do check if your formulas have the right quantifers is to use the “Mount
Everest” test that we did in class. Try plugging in Mount Everest in for some of the quantifed variables
in your formula, and see whether you accidentally make the entire formula true or the entire formula
false.

4 / 8

Use Whitespace and Indentation to Clarify Meaning
If you’re writing out a simple formula like this one:

∀x ∈ A. ∀y ∈ A. (xRy → yRx)

the formula can nicely and concisely ft onto a single line. But if you’re writing out something more
complex, it’s important to use whitespace to make it cleaner and easier to read. For example, consider
this formula, which says “every nonempty tournament has a tournament winner:”

∀T. (Tournament(T) ∧ (∃p. p ∈ T) →
 ∃w. (w ∈ T ∧
 ∀p ∈ T. (w ≠ p →
 (Beat(w, p) ∨ ∃q ∈ T. (Beat(w, q) ∧ Beat(q, p))
)
)
)

It’s a good exercise to see why this works. As a hint, the general pattern is the following:

For any tournament T that has at least one player,
 There is a player w (our winner) in T where
 For any player p other than w,
 Either w beat p or w beat some player q who in turn beat p.

This formula is lengthy and dense, but by writing it out on multiple lines and by indenting to show the
nesting structure, it’s signifcantly easier to read each piece, especially if you’re comfortable with the
Aristotelian forms and can recognize what each piece says.

On the other hand, imagine that you submit something like this for your TA to grade:

∀T. (Tournament(T) ∧ (∃p. p ∈ T) → ∃w. (w ∈ T ∧ ∀p ∈ T. (w ≠ p → (Beat(w, p) ∨ ∃q ∈ T. (Beat(w, q) ∧ Beat(q, p)))))

Here, we’ve crammed the entire formula onto a single line, and to do so we had to crank the font size
down to 10pt. Or worse, imagine you split it across multiple lines with no predictable pattern:

∀T. (Tournament(T) ∧ (∃p. p ∈ T) → ∃w. (w ∈ T ∧ ∀p ∈ T. (w ≠ p → (Beat(w,
p) ∨ ∃q ∈ T. (Beat(w, q) ∧ Beat(q, p)))))

This is the mathematical equivalent of writing a program like this one:

int main(){for(int i=0;i<5;i++){for(int j=0;j<5;j++){cout<<(i*j)<<endl;}}return 0;}

This program is technically correct, but it’s written in such a way that even a veteran programmer would
have to pause and think for a bit to see what’s being said. Even if this is functionally correct, it’s ✓t style
at best.

Just as you wouldn’t write programs like the one above, you should not try to represent a complicated
frsttorder logic formula with a number of diferent pieces all on a single line, and you should not put
line breaks in unusual places. If you do, you make it dramatically harder to grade what you’ve submitt
ted. If you submit a formula crammed onto one line or without clear whitespace, we reserve the right to
give it no points and move on, and if we misgrade a formula with bad arrangement because it was struc-
tured poorly, we will not regrade it!

5 / 8

Defer Quantifers Until They’re Needed
In most programming languages, you have the option to declare variables at many diferent points in a
function. It’s generally considered a good idea to declare variables as late as you possibly can. For examt
ple, the following code would be considered poor style:

int i;
int bestIndex;
int cost;
int bestCost = -1;

for (i = 0; i < arr.length; i++) {
 cost = costOf(arr[i]);
 if (cost > bestCost) {
 bestCost = cost;
 bestIndex = i;
 }
}

With all the variables declared up at the top, it’s hard to tell which values are transient and are only
needed once per loop iteration, which values are needed just to control the loop, and which values are
supposed to persist across the entire run of the loop. A much better way to write this code would be as
follows:

int bestIndex;
int bestCost = -1;

for (int i = 0; i < arr.length; i++) {
 int cost = costOf(arr[i]);
 if (cost > bestCost) {
 bestCost = cost;
 bestIndex = i;
 }
}

Here, it’s clearer that bestIndex and bestCost are supposed to persist across all iterations of the loop
(that’s why they’re declared outside the loop), that i is the loop counter and only exists while the loop
runs, and that cost is needed once per loop iteration and only exists during a single run of the loop. In
that sense, this code is easier to read. But this code is also far less errortprone than the initial one. In the
original version of the code, we could, at any point, read or write any of the four variables, making it
easy to read a value that hasn’t been initialized, or to read a value from a previous loop iteration that
hasn’t been reset yet.

In frsttorder logic, you have the ability to introduce variables at diferent points in a formula by using
quantifers. Our advice to you is the same as in programming: don’t put all the quantifers at the front of
the formula. This makes the formula much harder to read and is very errortprone.

As an example of this, let’s look at an attempted translation of the statement “there’s a kitten that loves
everyone.” The following formula does not correctly represent this idea:

⚠ ∃k. ∀p. (Kitten(k) ∧ Person(p) → Loves(k, p)) ⚠

Before we go into exactly why this doesn’t work, take a minute to read over this and see if you can fgure
out why it’s not a proper translation. The answer is on the next page.

The problem with this particular translation is that, the way the connectives are written out, this gets
parsed as follows:

⚠ ∃k. ∀p. ((Kitten(k) ∧ Person(p)) → Loves(k, p)) ⚠

6 / 8

Notice that this is essentially an implication wrapped in an existential quantifer, which is something
that, as we talked about earlier, does not work out correctly! Specifcally, imagine that we pick k to be
something that isn’t a kitten. That choice of k makes the entire formula true (do you see why?), comt
pletely independently of whether there is a kitten that loves everyone.

On the other hand, suppose we defer the quantifers until they’re actually needed. That gives us this fort
mula, which is indeed correct:

∃k. (Kitten(k) ∧
 ∀p. (Person(p) → Loves(k, p))
)

Notice here that the existential statement wraps a statement whose toptlevel connective is ∧, which
matches the general pattern we’ve seen so far. Specifcally, picking k to be something that isn’t a kitten
won’t make the inside of the formula true, since we need to fnd a choice of k where both k is a kitten
and k loves every person.

As a general rule, when translating statements into frsttorder logic, we strongly advise against trying to
guess all the quantifers up front. Instead, follow the methodology that we describe in the Guide to Logic
Translations: introduce quantifers one at a time and only at the specifc point in which you actually need
them. If you do decide to put all the quantifers up front, understand that even if your answer turns out to
be right, it’s still not considered good style, just as declaring all your variables up front at the top of a
function can be technically correct but not good style. (Pro tip / life advice: you should not feel good
about anything you do that is technically correct or technically legal.)

7 / 8

Check the Types of All Terms in the Formula
Firsttorder logic draws a distinction between objects and truth values. All variables in frsttorder logic
represent objects, and predicates applied to those functions produce truth values. You can only apply
predicates or functions to objects, and you can only apply connectives or quantifers to truth values. If
you try applying a connective to an object, you end up with a syntactically invalid formula for essent
tially the same reason that you get an error if in a language like C or C++ you try comparing a string
against an integer – the types are wrong.

Before you submit any formula, make sure that all the types work out. Start of by fnding all the objects
or variables in the formula. For each of them, mark them as type object. Then fnd the functions. The int
puts to any function must also have type object, and the overall function evaluates to something of type
object. Then fnd the predicates – their inputs must all be objects, and their output is of type truth value.
Finally, look at quantifers and propositional connectives. Their inputs must have type truth value, and
their outputs are of type truth value as well.

As an example, let’s imagine that we have the following predicates and functions at our disposal:

• The predicate Puppy(x), which states that x is a puppy.
• The predicate Cute(x), which states that x is cute.
• The predicate Person(x), which states that x is a person.
• The function OwnerOf(x), which evaluates to the owner of x.

Let’s suppose we want to translate the statement “everyone owns at least one cute puppy” into frsttorder
logic and that we come up with the following statement, which turns out to be incorrect:

⚠ ∀p. (Person(p) = OwnerOf(∃d. (Puppy(d) ∧ Cute(d)))) ⚠

One way to see that this is incorrect is to notice that inside the toptlevel quantifer, we’re comparing two
terms with the equality predicate: Person(p) and OwnerOf(…). This, unfortunately, isn’t syntactically
valid, because Person(p) is a predicate and evaluates to a truth value, but the equality predicate can only
work on objects. In that sense, we can immediately see that this formula can’t be correct because the
types don’t match up properly.

There’s another type error in here. Notice that we apply the OwnerOf predicate to an existentiallytquant
tifed statement (∃d. …). Remember that any quantifed statement evaluates to a truth value (in this case,
there either is a cute puppy or there isn’t), and functions can only be applied to objects. Again, this by itt
self is sufcient for us to see that this formula cannot be correct.

Here’s another formula that’s an incorrect way of translating the statement:

∀p. (Person(p) →
⚠ ∃d. (OwnerOf(Cute(Puppy(d))) = p) ⚠

)

To see where the issue is, let’s look at the expression

⚠ OwnerOf(Cute(Puppy(d))) = p ⚠

Let’s work from the inside out. The variable d has type object, since it’s a quantifed variable. We’re prot
viding it as input to the predicate Puppy, which takes in an object and produces a truth value. But then
we try to apply the predicate Cute, which is supposed to take in something of type object, to Puppy(d),
which is a truth value. As a result, this formula isn’t syntactically valid.

Be sure to “typetcheck” your formulas before submitting them. Otherwise, you risk turning in a formula
that “doesn’t compile,” which would be a shame.

8 / 8

Check the Scoping on Each Variable
The variable introduced by a quantifer has a scope, and it’s important to make sure that any time you
reference a variable that that variable is in scope. (This is something you’re hopefully familiar with from
your programming experience.)

There are two general classes of scoping mistakes we see people make. The frst one is to omit an imt
portant pair of parentheses. For example, suppose you want to translate the statement “there is a movie
featuring both Emma Stone and Ryan Gosling.” Here’s an incorrect translation:

⚠ ∃m. Movie(m) ∧ AppearsIn(EmmaStone, m) ∧ AppearsIn(RyanGosling, m) ⚠

The problem with this statement has to do with the precedence of the existential quantifer. Remember
that existential quantifers have high operator precedence – higher than anything else, in fact – so this
expression is interpreted as

⚠ (∃m. Movie(m)) ∧ AppearsIn(EmmaStone, m) ∧ AppearsIn(RyanGosling, m) ⚠

and the underlined appearances of m refer to a nonexistent variable m. It’s the programming equivalent
of writing the following:

{
 Movie m;
}
AppearsIn(EmmaStone, m); // Error! m is out of scope.
AppearsIn(RyanGosling, m); // Error! m is out of scope.

This sort of error, fortunately, is easily corrected. As a rule of thumb, any time you introduce a quanti t
fer, surround the expression you want to quantify with parentheses, as shown here:

 ∃m. (Movie(m) ∧ AppearsIn(EmmaStone, m) ∧ AppearsIn(RyanGosling, m))

As you’re reviewing all of your frsttorder logic formulas, make sure that every time you reference a
quantifed variable that you’re inside of some parentheses preceded by the quantifer. If you follow our
indentation guidelines from earlier (which we strongly recommend!), you can see whether you’ve done
this right by making sure that you put in some parentheses right after the quantifer and then just look at
the indentation.

The other scoping error we typically see involves quantifying over a variable at the wrong time. For ext
ample, suppose we want to translate the statement “every person has a puppy” into frsttorder logic.
Here’s an incorrect way to do this:

⚠ ∃d. (Puppy(d)) ∧ ∀p. (Person(p) → HasPet(p, d)) ⚠

Notice that when we write HasPet(p, d) that the variable p is in scope, but the variable d is completely
out of scope. As a result, this formula isn’t syntactically valid.

This type of mistake is harder to correct. The issue here is that the quantifer introducing d is in the
wrong place – it’s at the toptlevel, meaning that there’s no connection between p and d. A better translat
tion would be something like this:

∀p. (Person(p) →
 ∃d. (Puppy(d) ∧ HasPet(p, d))
)

Here, the quantifer introducing the puppy d is nested inside of the statement quantifed over by p, so evt
erything is scoped properly. You can think of this rule, in some sense, as a consequence of the advice to
delay quantifers until they’re needed. We don’t need to be talking about puppies until we’re talking
about a specifc person, so we won’t introduce that quantifer at the start of the formula.

	Pair Quantifiers With the Appropriate Connectives
	Use Whitespace and Indentation to Clarify Meaning
	If you’re writing out a simple formula like this one:
	∀x ∈ A. ∀y ∈ A. (xRy → yRx)
	the formula can nicely and concisely fit onto a single line. But if you’re writing out something more complex, it’s important to use whitespace to make it cleaner and easier to read. For example, consider this formula, which says “every nonempty tournament has a tournament winner:”
	∀T. (Tournament(T) ∧ (∃p. p ∈ T) → ∃w. (w ∈ T ∧ ∀p ∈ T. (w ≠ p → (Beat(w, p) ∨ ∃q ∈ T. (Beat(w, q) ∧ Beat(q, p)))))
	It’s a good exercise to see why this works. As a hint, the general pattern is the following:
	For any tournament T that has at least one player, There is a player w (our winner) in T where For any player p other than w, Either w beat p or w beat some player q who in turn beat p.
	This formula is lengthy and dense, but by writing it out on multiple lines and by indenting to show the nesting structure, it’s significantly easier to read each piece, especially if you’re comfortable with the Aristotelian forms and can recognize what each piece says.
	On the other hand, imagine that you submit something like this for your TA to grade:
	∀T. (Tournament(T) ∧ (∃p. p ∈ T) → ∃w. (w ∈ T ∧ ∀p ∈ T. (w ≠ p → (Beat(w, p) ∨ ∃q ∈ T. (Beat(w, q) ∧ Beat(q, p)))))
	Here, we’ve crammed the entire formula onto a single line, and to do so we had to crank the font size down to 10pt. Or worse, imagine you split it across multiple lines with no predictable pattern:
	∀T. (Tournament(T) ∧ (∃p. p ∈ T) → ∃w. (w ∈ T ∧ ∀p ∈ T. (w ≠ p → (Beat(w, p) ∨ ∃q ∈ T. (Beat(w, q) ∧ Beat(q, p)))))
	This is the mathematical equivalent of writing a program like this one:
	int main(){for(int i=0;i<5;i++){for(int j=0;j<5;j++){cout<<(i*j)<<endl;}}return 0;}
	This program is technically correct, but it’s written in such a way that even a veteran programmer would have to pause and think for a bit to see what’s being said. Even if this is functionally correct, it’s ✓- style at best.
	Just as you wouldn’t write programs like the one above, you should not try to represent a complicated first-order logic formula with a number of different pieces all on a single line, and you should not put line breaks in unusual places. If you do, you make it dramatically harder to grade what you’ve submitted. If you submit a formula crammed onto one line or without clear whitespace, we reserve the right to give it no points and move on, and if we misgrade a formula with bad arrangement because it was structured poorly, we will not regrade it!
	Defer Quantifiers Until They’re Needed
	Check the Types of All Terms in the Formula
	Check the Scoping on Each Variable

